
TurboPK

TurboPk is a survivability/vulnerability/lethality (SVL) code highly optimized for
modern desktop CPUs. Modern CPUs are designed for parallel processing. They
are multicore, superscalar, hyperthreaded, and vectorized. These parallel
processing features can result in very impressive performance if the code in
question has been written to take advantage of them. TurboPk was written to do
exactly that.

TurboPk is orders of magnitude faster than other point-burst codes. Figure 1 is a
screen shot of TurboPk analyzing a set of 1000 burst points against a lightly
armored vehicle. In this example the warhead ejects 2000 fragments. The burst
points are all at the same height 5-meters above the ground plane. The weapon
trajectory is a 45-degree diving angle. At each of the 1000 burst locations 20
Monte Carlo sample point-bursts were performed to compute average PK. Figure
1 is a top view displaying average PK versus burst location as a set of color-
coded dots. Total run time was only 0.65 seconds on an Intel Core i7 desktop
machine.

That kind of computing speed opens up a whole new range of possible SVL
applications. A simple example is shown in Figure 2. The dialog box shown in

Figure 1. Example TurboPk run.

Figure 2 stipulates the parameters of the Rayleigh burst point distribution in
TurboPK. Note the “spin buttons” next to each parameter field. Clicking on these
spin buttons increments or decrements the parameter in question by a fixed
amount. For example, the centroid coordinates are changed by one meter when
clicking on their spin buttons. In Figure 2 the “Centroid X” decrement spin button
was clicked twice, so the centroid x value changed from 0.0 (Figure 1) to –2.0 in
Figure 2. Overall average PK jumped from 0.28 to 0.73.

 Reducing the samples-per-burst-point to 100 reduces the run time to 0.10
seconds while not changing the overall PK much. That opens up the possibility of
linking the centroid coordinates to the mouse location. As the user scrolls the
mouse around PK would be computed and displayed on the fly.

TurboPK also supports the analysis of projectile (bullet) impacts. Under this
option the user specifies an approach angle pair (azimuth and elevation) and the
code generates a grid of parallel shotlines that covers the target projection. A
projectile impact event is simulated for each of the parallel shotlines and the
computational results are displayed as a color map imposed on the target image.
Several types of calculations are implemented. One calculation of interest to

Figure 2. Moving the centroid x.

armor designers is impact speed on the first vulnerable component seen along a
shotline. Ideally that would be zero everywhere, but weight constraints almost
always preclude that. Figure 3 is an example parallel shotline calculation for a
12.7 API projectile striking a lightly armored vehicle at 2700 fps. Figure 4 reduces
the impact speed to 1900 fps. Run time in both cases is roughly 0.13 seconds for
½-inch shotline spacing.

With TurboPK it is possible for a user to spin the target around through a range of
projectile approach angles and watch the results in near real time. One obvious

Figure 3. Parallel shotline example – 2700 fps.

Figure 4. Parallel shotline example – 1900 fps.

improvement would be to enable a user to move components around internally
then rotate through a set of approch angles to see whether or not the new
arrangement improves things. Another possibility is to compute how much
additional RHA would need to be added to each shotline to bring the speed down
to zero, then display the results as an “additional area density” map, which would
aid armor designers in placing new panels.

TurboPK also has an option for analyzing parallel shotline grids for HEI
projectiles. Figure 5 shows an example HEI calculation. The color indicates total
target PK, i.e., a fault tree is invoked after component PK values have been
computed. Shotline spacing is 1-foot, and 20 Monte Carlo repeats are done for
each burst point. Run time was just under 1.0 second, so it is not unreasonable
to Imagine doing a full 27-view analysis in one minute.

In its current form TurboPK relies exclusively on triangle geometry. That might
change in the future if CPU or GPU vendors add hardware for ray tracing
NURBS or parametric surfaces, but for the time being TurboPK will stick to
triangles. We do not see that as a limitation as all popular CAD programs support

Figure 5. Example HEI analysis.

triangle geometry export as STL (Stereolithography) files. To turn STL geometry
models into TurboPK SVL models we provide a companion program called STL
Model Builder. Figure 6 shows this program in action after the user has loaded a
set of 110 STL files for a drone aircraft model. The actual CAD model was done
in SolidWorks and the 110 STL files were exported from SolidWorks. The dialog
box allows the user to specify / edit SVL properties like Covart material ID,
component Pk/h function ID, and so forth. So you can turn STL geometry files
into a TurboPK SVL-capable model. TurboPK Pk/h functions and fault trees
adhere to Covart-4 standard formats.

Figure 6. STL Model Builder.

